Micro CT and Micro MR imaging of 3D architecture of animal skeleton.

نویسندگان

  • Y Jiang
  • J Zhao
  • D L White
  • H K Genant
چکیده

Quantitative assessment of three-dimensional (3D) trabecular structural characteristics may improve our ability to understand the pathophysiology of osteoporosis, to test the efficacy of pharmaceutical intervention, and to estimate bone biomechanical properties. Considerable progress has been made in advanced imaging techniques for noninvasive and/or nondestructive assessment of 3D trabecular structure and connectivity. Micro computed tomography (microCT) has been used to measure 3D trabecular bone structure in rats, both in vivo and in vitro. It can directly quantify 3D trabecular bone structure such as trabecular volume, trabecular thickness, number, separation, structure model index, degree of anisotropy, and connectivity, in a model-independent manner. We have used microCT to study ovariectomy (OVX) induced osteopenia in rats and its treatment with agents such as estrogen, and sodium fluoride. We have demonstrated that 3D microCT can quantify mouse trabecular and cortical bone structure with an isotropic resolution of 9 microm(3). It is also useful for studying osteoporosis in mice and in phenotypes of transgenic mice or gene knockout mice. MicroCT can be used to quantify osteogenesis in mouse Ilizarov leg lengthening procedures, to quantify osteoconduction in a rat cranial defect model, and to quantify cortical bone porosity. Recently, microCT using high intensity and tight collimation synchrotron radiation to achieve spatial resolution of 1-2 microm has provided the capability to assess additional features such as resorption cavities. Unlike microCT, micro magnetic resonance imaging (IMRI) is nonionizing. Recently, the ability of microMRI to assess osteoporosis in animal models has been explored. Using a small, high-efficiency coil in a high-field imager, microMRI can give resolutions sufficient to discriminate individual trabeculae. We have shown that, with appropriate settings, it is possible to image trabecular bone in rats in vivo and in vitro. In our study of OVX rats, analysis of microMR images can demonstrate differences in rat trabecular bone that are not detected by DXA measurements. In a rabbit OA model, with the OA induced by meniscectomy or anterior cruciate ligament transection, MRI shows decreased cartilage thickness, subchondral osteosclerosis and osteophytes, while radiographs can only show subchondral osteosclerosis and osteophytes could not be found. Advanced imaging methods are able to measure 3D trabecular structure and connectivity in arbitrary orientations in a highly automated, objective, non-user-specific manner, allowing greater numbers of samples for unbiased comparisons between controls and the disordered or treated. They can be utilized on a large sample leading to fewer sampling errors. They are non-destructive allowing multiple tests such as biomechanical testing and chemical analysis on the same sample; and non-invasive permitting longitudinal studies and reducing the number of animals needed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrated visualization of multi-angle bioluminescence imaging and micro CT

This paper explores new methods to visualize and fuse multi-2D bioluminescence imaging (BLI) data with structural imaging modalities such as micro CT and MR. A geometric, back-projection-based 3D reconstruction for superficial lesions from multi-2D BLI data is presented, enabling a coarse estimate of the 3D source envelopes from the multi-2D BLI data. Also, an intuitive 3D landmark selection is...

متن کامل

Assessment of cancellous bone mechanical properties from micro-FE models based on micro-CT, pQCT and MR images.

Recently, new micro-finite element (micro-FE) techniques have been introduced to calculate cancellous bone mechanical properties directly from high-resolution images of its internal architecture. Also recently, new peripheral quantitative computed tomography (pQCT) and magnetic resonance (MR) imaging techniques have been developed that can create images of whole bones in vivo with enough detail...

متن کامل

Small Animal X-ray Computed Tomography

X-ray computed tomography (CT) systems with high resolution (also known as micro-CT systems) have been developed over the last two decades and have been used with great success in small animal studies. A micro-CT scanner is based on the same underlying physical principle as a clinical CT scanner, but it is designed for higher-resolution imaging. It produces three-dimensional (3D) tomographic da...

متن کامل

Zebrafish skeleton development: High resolution micro-CT and FIB-SEM block surface serial imaging for phenotype identification

Although bone is one of the most studied living materials, many questions about the manner in which bones form remain unresolved, including fine details of the skeletal structure during development. In this study, we monitored skeleton development of zebrafish larvae, using calcein fluorescence, high-resolution micro-CT 3D images and FIB-SEM in the block surface serial imaging mode. We compared...

متن کامل

Optimization of Imaging Parameters in Micro-CT Scanner Based On Signal-To-Noise Ratio for the Analysis of Urinary Stone Composition

Introduction: Micro-CT scanner with a resolution of about 5 micrometers is one of the modalities used to create three-dimensional/two-dimensional images of urinary stones. This study aimed to optimize imaging parameters in micro-computed tomography (CT) scanner based on the signal-to-noise ratio (SNR) of urinary stones for the analysis of stone composition. <stro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of musculoskeletal & neuronal interactions

دوره 1 1  شماره 

صفحات  -

تاریخ انتشار 2000